Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Nat Commun ; 15(1): 4022, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740787

ABSTRACT

The vectorial optical field (VOF) assumes a pivotal role in light-matter interactions. Beyond its inherent polarization topology, the VOF also encompasses an intrinsic degree of freedom associated with parity (even or odd), corresponding to a pair of degenerate orthogonal modes. However, previous research has not delved into the simultaneous manipulation of both even and odd parities. In this study, we introduce and validate the previously unexplored parity Hall effect for vectorial modes using a metasurface design. Our focus lies on a cylindrical vector beam (CVB) as a representative case. Through the tailored metasurface, we effectively separate two degenerate CVBs with distinct parities in divergent directions, akin to the observed spin states split in the spin Hall effect. Additionally, we provide experimental evidence showcasing the capabilities of this effect in multi-order CVB demultiplexing and parity-demultiplexed CVB-encoded holography. This effect unveils promising opportunities for various applications, including optical communication and imaging.

2.
Virus Genes ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722491

ABSTRACT

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.

3.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731750

ABSTRACT

Salmonella is a common foodborne pathogen that can cause food poisoning, posing a serious threat to human health. Therefore, quickly, sensitively, and accurately detecting Salmonella is crucial to ensuring food safety. For the Salmonella hilA gene, we designed Recombinase-aided amplification (RAA) primers and dsDNA-specific nuclease (DNase) probes. The ideal primer and probe combination was found when conditions were optimized. Under UV light, a visual Salmonella detection technique (RAA-dsDNase) was developed. Additionally, the RAA-dsDNase was modified to further reduce pollution hazards and simplify operations. One-pot RAA-dsDNase-UV or one-pot RAA-dsDNase-LFD was developed as a Salmonella detection method, using UV or a lateral flow dipstick (LFD) for result observation. Among them, one-pot RAA-dsDNase and one-pot RAA-dsDNase-LFD had detection times of 50 min and 60 min, respectively, for detecting Salmonella genomic DNA. One-pot RAA-dsDNase-UV had a detection limit of 101 copies/µL and 101 CFU/mL, while one-pot RAA-dsDNase-LFD had a sensitivity of 102 copies/µL and 102 CFU/mL. One-pot RAA-dsDNase-UV and one-pot RAA-dsDNase-LFD assays may identify 17 specific Salmonella serovars witho ut causing a cross-reaction with the remaining 8 bacteria, which include E. coli. Furthermore, Salmonella in tissue and milk samples has been reliably detected using both approaches. Overall, the detection method developed in this study can quickly, sensitively, and accurately detect Salmonella, and it is expected to become an important detection tool for the prevention and control of Salmonella in the future.

4.
ACS Synth Biol ; 13(4): 1323-1331, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38567812

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a major cause of diarrhea and diarrhea-related deaths among piglets and results in massive losses to the overall porcine industry. The clinical manifestations of porcine diarrhea brought on by the porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and PDCoV are oddly similar to each other. Hence, the identification of different pathogens through molecular diagnosis and serological techniques is crucial. Three novel detection methods for identifying PDCoV have been developed utilizing recombinase-aided amplification (RAA) or reverse transcription recombinase-aided amplification (RT-RAA) in conjunction with Pyrococcus furiosus Argonaute (PfAgo): RAA-PfAgo, one-pot RT-RAA-PfAgo, and one-pot RT-RAA-PfAgo-LFD. The indicated approaches have a detection limit of around 60 copies/µL of PDCoV and do not cross-react with other viruses including PEDV, TGEV, RVA, PRV, PCV2, or PCV3. The applicability of one-pot RT-RAA-PfAgo and one-pot RT-RAA-PfAgo-LFD were examined using clinical samples and showed a positive rate comparable to the qPCR method. These techniques offer cutting-edge technical assistance for identifying, stopping, and managing PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Porcine epidemic diarrhea virus , Pyrococcus furiosus , Swine Diseases , Animals , Swine , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Pyrococcus furiosus/genetics , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Sensitivity and Specificity , Diarrhea/diagnosis , Recombinases
5.
Colloids Surf B Biointerfaces ; 238: 113872, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555762

ABSTRACT

Elucidation on the emulsifying behaviors of goose liver protein (GLP) from interfacial perspective was scarce when protein charging was altered. This work aimed to elucidate the role of phosphorylation on the interfacial associative interaction and then emulsion stabilizing properties of GLP using three structurally relevant phosphates of sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP) and sodium pyrophosphate (TSPP). A monotonic increment of protein charging treated from STMP, STPP to TSPP caused progressively increased particle de-aggregation, surface hydrophobicity and structural flexibility of GLP. Compared with STMP and TSPP, STPP phosphorylation rendered the most strengthened interfacial equilibrium pressure (11.98 ± 0.24 mN/m) due to sufficient unfolding but moderated charging character conveyed. Desorption curve and interfacial protein microstructure indicated that STPP phosphorylation caused the highest interfacial connectivity between proteins adsorbed onto the same droplet, as was also verified by interfacial elastic modulus (10.3 ± 0.21 mN/m). STPP treated GLP also yielded lowest droplet size (8.16 ± 0.10 µm), flocculation (8.18%) and Turbiscan stability index (8.78 ± 0.36) of emulsion but most improved microrheological properties. Overall, phosphorylation functioned itself in fortifying the intradroplet protein-protein interaction but restraining the interdroplet aggregation, and STPP phosphorylation endowed the protein with most enhanced interfacial stabilization and emulsifying efficiency.


Subject(s)
Emulsions , Geese , Hydrophobic and Hydrophilic Interactions , Liver , Polyphosphates , Animals , Phosphorylation , Emulsions/chemistry , Polyphosphates/chemistry , Liver/metabolism , Diphosphates/chemistry , Diphosphates/metabolism , Surface Properties , Phosphates/chemistry , Particle Size , Adsorption
6.
Ultrason Sonochem ; 105: 106857, 2024 May.
Article in English | MEDLINE | ID: mdl-38552299

ABSTRACT

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Subject(s)
Ananas , Antioxidants , Fermentation , Plant Extracts , Yogurt , Yogurt/microbiology , Yogurt/analysis , Ananas/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Sonication , Temperature , Hydrogen-Ion Concentration , Food Handling/methods , Food Quality
7.
Biosens Bioelectron ; 254: 116230, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38520983

ABSTRACT

African swine fever (ASF), which is casued by African swine fever virus (ASFV), is a fatal infectious disease of pigs that results in significant losses to the breeding industry. Therefore, screening and detection are crucial for the control and prevention of the ASFV. Argonaute is a new detection tool that is being extensively used due to its high specificity and programmability. This study reports on a new nucleic acid assay method, termed REPD, which uses recombinase-aided amplification and restriction endonuclease-assisted Pyrococcus furiosus argonaute (PfAgo) detection. One-pot REPD was developed for the detection of ASFV. The one-pot REPD could detect a single copy of ASFV nucleic acid and showed no cross-reactivity with other pathogens. Detection in clinical samples was 100% consistent with the results of real-time PCR analysis. The results showed that the one-pot REPD assay is convenient, sensitive, specific, and potentially adaptable to the detection of ASFV. In summary, this study highlights a novel method that can be employed for the detection of pathogens.


Subject(s)
African Swine Fever Virus , African Swine Fever , Biosensing Techniques , Nucleic Acids , Pyrococcus furiosus , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/diagnosis , Pyrococcus furiosus/genetics , DNA, Viral , Sensitivity and Specificity
8.
Adv Food Nutr Res ; 108: 113-134, 2024.
Article in English | MEDLINE | ID: mdl-38460997

ABSTRACT

The pronounced perception of off-odors poses a prevalent issue across various categories of food ingredients and processed products, significantly exerting negative effects on the overall quality, processability, and consumer acceptability of both food items and raw materials. Conventional methods such as brining, marinating, and baking, are the main approaches to remove the fishy odor. Although these methods have shown notable efficacy, there are simultaneously inherent drawbacks that ultimately diminish the processability of raw materials, encompassing alterations in the original flavor profiles, the potential generation of harmful substances, restricted application scopes, and the promotion of excessive protein/lipid oxidation. In response to these challenges, recent endeavors have sought to explore innovative deodorization techniques, including emerging physical processing approaches, the development of high-efficiency adsorbent material, biological fermentation methods, and ozone water rinsing. However, the specific mechanisms underpinning the efficacy of these deodorization techniques remain not fully elucidated. This chapter covers the composition of major odor-causing substances in food, the methodologies for their detection, the mechanisms governing their formation, and the ongoing development of deodorization techniques associated with the comparison of their advantages, disadvantages, and application mechanisms. The objective of this chapter is to furnish a theoretical framework for enhancing deodorization efficiency through fostering the development of suitable deodorization technologies in the future.


Subject(s)
Food , Odorants
9.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472852

ABSTRACT

The effects of low-sodium salt mixture substitution on the sensory quality, protein oxidation, and hydrolysis of air-dried chicken and its molecular mechanisms were investigated based on tandem mass tagging (TMT) quantitative proteomics. The composite salt formulated with 1.6% KCl, 0.8% MgCl2, and 5.6% NaCl was found to improve the freshness and texture quality scores. Low-sodium salt mixture substitution significantly decreased the carbonyl content (1.52 nmol/mg), surface hydrophobicity (102.58 µg), and dimeric tyrosine content (2.69 A.U.), and significantly increased the sulfhydryl content (74.46 nmol/mg) and tryptophan fluorescence intensity, suggesting that protein oxidation was inhibited. Furthermore, low-sodium salt mixture substitution significantly increased the protein hydrolysis index (0.067), and cathepsin B and L activities (102.13 U/g and 349.25 U/g), suggesting that protein hydrolysis was facilitated. The correlation results showed that changes in the degree of protein hydrolysis and protein oxidation were closely related to sensory quality. TMT quantitative proteomics indicated that the degradation of myosin and titin as well as changes in the activities of the enzymes, CNDP2, DPP7, ABHD12B, FADH2A, and AASS, were responsible for the changes in the taste quality. In addition, CNDP2, ALDH1A1, and NMNAT1 are key enzymes that reduce protein oxidation. Overall, KCl and MgCl2 composite salt substitution is an effective method for producing low-sodium air-dried chicken.

10.
Int J Biol Macromol ; 263(Pt 1): 130300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395276

ABSTRACT

This work employed the model protein ß-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.


Subject(s)
Aldehydes , Lactoglobulins , Tandem Mass Spectrometry , Molecular Docking Simulation , Lactoglobulins/chemistry , Chromatography, Liquid , Molecular Dynamics Simulation
11.
BMC Med Imaging ; 24(1): 31, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308230

ABSTRACT

PURPOSE: The tumor immune microenvironment is a valuable source of information for predicting prognosis in breast cancer (BRCA) patients. To identify immune cells associated with BRCA patient prognosis from the Cancer Genetic Atlas (TCGA), we established an MRI-based radiomics model for evaluating the degree of immune cell infiltration in breast cancer patients. METHODS: CIBERSORT was utilized to evaluate the degree of infiltration of 22 immune cell types in breast cancer patients from the TCGA database, and both univariate and multivariate Cox regressions were employed to determine the prognostic significance of immune cell infiltration levels in BRCA patients. We identified independent prognostic factors for BRCA patients. Additionally, we obtained imaging features from the Cancer Imaging Archive (TCIA) database for 73 patients who underwent preoperative MRI procedures, and used the Least Absolute Shrinkage and Selection Operator (LASSO) to select the best imaging features for constructing an MRI-based radiomics model for evaluating immune cell infiltration levels in breast cancer patients. RESULTS: According to the results of Cox regression analysis, M2 macrophages were identified as an independent prognostic factor for BRCA patients (HR = 32.288, 95% CI: 3.100-357.478). A total of nine significant features were selected to calculate the radiomics-based score. We established an intratumoral model with AUCs (95% CI) of 0.662 (0.495-0.802) and 0.678 (0.438-0.901) in the training and testing cohorts, respectively. Additionally, a peritumoral model was created with AUCs (95% CI) of 0.826 (0.710-0.924) and 0.752 (0.525-0.957), and a combined model was established with AUCs (95% CI) of 0.843 (0.723-0.938) and 0.744 (0.491-0.965). The peritumoral model demonstrated the highest diagnostic efficacy, with an accuracy, sensitivity, and specificity of 0.773, 0.727, and 0.818, respectively, in its testing cohort. CONCLUSION: The MRI-based radiomics model has the potential to evaluate the degree of immune cell infiltration in breast cancer patients, offering a non-invasive imaging biomarker for assessing the tumor microenvironment in this disease.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Radiomics , Tumor Microenvironment , Prognosis , Magnetic Resonance Imaging
12.
J Med Virol ; 96(1): e29428, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38258306

ABSTRACT

To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.


Subject(s)
Hepatitis B, Chronic , Organic Anion Transporters, Sodium-Dependent , Symporters , Female , Humans , Male , Disease Progression , DNA, Viral/genetics , Fibrosis , Hepatitis B virus , Hepatitis B, Chronic/genetics , Inflammation , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Middle Aged
13.
Appl Microbiol Biotechnol ; 108(1): 137, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229331

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, induces severe vomiting and acute watery diarrhea in unweaned piglets. The pig industry has suffered tremendous financial losses due to the high mortality rate of piglets caused by PEDV. Consequently, a simple and rapid on-site diagnostic technology is crucial for preventing and controlling PEDV. This study established a detection method for PEDV using recombinase-aided amplification (RAA) and Pyrococcus furiosus Argonaute (PfAgo), which can detect 100 copies of PEDV without cross-reactivity with other pathogens. The entire reaction of RAA and PfAgo to detect PEDV does not require sophisticated instruments, and the reaction results can be observed with the naked eye. Overall, this integrated RAA-PfAgo cleavage assay is a practical tool for accurately and quickly detecting PEDV. KEY POINTS: • PfAgo has the potential to serve as a viable molecular diagnostic tool for the detection and diagnosis of viral genomes • The RAA-PfAgo detection technique has a remarkable level of sensitivity and specificity • The RAA-PfAgo detection system can identify PEDV without needing advanced equipment.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Pyrococcus furiosus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Pyrococcus furiosus/genetics , Swine Diseases/diagnosis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Diarrhea , Recombinases
14.
J Sci Food Agric ; 104(2): 1107-1115, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37736877

ABSTRACT

BACKGROUND: Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION: These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.


Subject(s)
Geese , Soybean Proteins , Animals , Emulsions/chemistry , Soybean Proteins/chemistry , Temperature , Polysaccharides/chemistry , Liver , Water/chemistry
15.
Food Res Int ; 175: 113774, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129063

ABSTRACT

To investigate the mechanism of Penicillium proteases on the hydrolysis of myofibrillar protein (MP) and volatile compound evolutions, enzymatic characteristics of Penicillium proteases, hydrolysis capacities for MP, interactions between Penicillium proteases and MP, and profile changes of volatile compounds were investigated. P. aethiopicum (PA) and P. chrysogenum (PC) proteases showed the largest hydrolysis activities at pH 9.0 and 7.0, and were identified as alkaline serine protease and serine protease by LC-MS/MS, respectively. The proteases of PA and PC significantly degraded myosin and actin, and PA protease showed higher hydrolysis capacity for myosin than that of PC protease, which was confirmed by higher proteolysis index (56.06 %) and lower roughness (3.99 nm) of MP after PA treatment. Molecular docking revealed that hydrogen bond and hydrophobic interaction were the major interaction forces of Penicillium proteases with myosin and actin, and PA protease showed more binding sites with myosin compared with PC protease. The total content of free amino acids increased to 6.02-fold for PA treatment and to 5.51-fold for PC treatment after 4 h hydrolysis of MP, respectively. GC-MS showed that aromatic aldehydes and pyrazines in PA showed the largest increase compared with the control and PC during the hydrolysis of MP. Correlation analysis demonstrated that Phe, Leu and Ile were positively related with the accumulation of benzaldehyde, benzeneacetaldehyde, 2,4-dimethyl benzaldehyde and 2,5-dimethyl pyrazine.


Subject(s)
Penicillium , Hydrolysis , Penicillium/metabolism , Benzaldehydes , Actins , Molecular Docking Simulation , Chromatography, Liquid , Tandem Mass Spectrometry , Serine Proteases/metabolism , Serine Endopeptidases/metabolism , Myosins
16.
Food Res Int ; 174(Pt 1): 113596, 2023 12.
Article in English | MEDLINE | ID: mdl-37986459

ABSTRACT

The optimization of processed meats through salt replacement using KCl and k-lactate may reduce the risk of chronic diseases through reduction in dietary sodium. The objective of this study was to investigate the changes and relationships between microbial and lipid metabolism during the fermentation of restructured duck ham with different salt substitutions. Lactobacillus and Staphylococcus were found to be the dominant bacterial species in the 30 % KCl + 70 % NaCl (w/w) and 25 % k-lactate + 75 % NaCl (w/w). The LefSe analysis showed that different biomarkers were present in different ham groups, and the PLS-DA showed that triglycerides (GL) and glycerophospholipids (GP) were the two classes with the highest abundance. Besides, the KEGG pathway analysis revealed that glycerophospholipid metabolism and triglyceride metabolism were also the main metabolic pathways. According to the correlation study, Staphylococcus, Halomonas, and Lactobacillus were mostly linked to the important metabolic pathways in restructured ham. Our findings serve as a foundation for quality assurance and product enhancement for low-salt restructured ham.


Subject(s)
Pork Meat , Sodium Chloride , Chromatography, Liquid , Lipidomics , Tandem Mass Spectrometry , Sodium Chloride, Dietary , Lactic Acid , High-Throughput Nucleotide Sequencing
17.
Materials (Basel) ; 16(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37763400

ABSTRACT

By experimental methods, 26 specimens were designed to conduct elastic and elastic-plastic buckling tests on cylindrical shells containing cracks. This study discusses the influence of factors such as the length-diameter ratio, the diameter-thickness ratio, the crack length, the inclination of the crack, etc., on the buckling load. Additionally, finite element models were established to compare with experimental results. For the PMMA cylindrical shell, the results showed that as the length-diameter ratio of the cylindrical shell increased, the buckling load first decreased and then increased. For the 6063 aluminum alloy cylindrical shell, with increasing length-diameter ratio, diameter-thickness ratio, and crack length of the cylindrical shell, the buckling load decreased accordingly. However, concerning the crack inclination, as the crack inclination increased, the buckling load increased accordingly. This indicates that the larger the crack inclination, the higher the load capacity of the cylindrical shell containing cracks. Through finite element simulations of cylindrical shells with cracks, it was found that through compressive mechanical properties, both elastic and elastic-plastic buckling loads yielded results that are closer to the experimental results. Additionally, the inclusion of contact effects in numerical simulations further improved the agreement with the experimental results, and the variation trend of the buckling load in the finite element simulation was consistent with the experimental results. The research findings provide valuable references for the assessment of load capacity in structures containing cracks.

18.
Int J Biol Macromol ; 253(Pt 2): 126810, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690654

ABSTRACT

The appropriateness of animal by-product proteins as emulsifiers is barely explored compared to their meat counterparts. This paper focused on improving interfacial and emulsifying properties of modified goose liver protein using three structurally relevant polyphenols either enhanced by pH shifting (P-catechin, P-quercetin and P-rutin) or not (catechin, quercetin and rutin). Due to its high hydrophobicity and limited steric hindrance, quercetin was more sufficient to hydrophobically interact (ΔH > 0, ΔS > 0) with MGLP than catechin and rutin. Results showed that polyphenol interactive affinity was positively correlated to surface hydrophobicity but negatively to size and aggregation extent of MGLP. Interfacial pressure and dilatational elastic modulus implied that synergistic polyphenol interaction and pH shifting favored the interfacial adsorption and macromolecular association of MGLP, particularly for P-quercetin with the values reached to 19.9 ± 2.0 mN/m and 22.9 ± 1.2 mN/m, respectively. Emulsion stabilized by P-quercetin also maintained highest physical and oxidative stabilities regarding the lowest D [4,3] (3.78 ± 0.27 µm) and creaming index (8.38 ± 0.43 %), together with highest mono- (19.51 %) and polyunsaturated fatty acid content (29.39 %) during storage. Overall, chemical structure of polyphenols may be determining in fabricating MGLP-polyphenol complexes with improved emulsion stabilization efficiency.


Subject(s)
Catechin , Quercetin , Animals , Quercetin/chemistry , Emulsions/chemistry , Geese , Catechin/chemistry , Phenols , Proteins , Polyphenols/chemistry , Emulsifying Agents/chemistry , Rutin/chemistry , Hydrogen-Ion Concentration , Meat , Liver
19.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569991

ABSTRACT

The current work reveals the influence of loading parameters on the crack growth behavior of a Zr/Ti/steel composite plate with a crack normal to the interface by using an experiment and the finite element method. The Chaboche model was first used to study cyclic plastic evolution in composite materials. The results reveal that an increase in Fmax, Fm, and Fa can promote da/dN; meanwhile, an increase in R will reduce da/dN. The plastic strain accumulation results indicate that Fm mainly contributes to the tensile strain and compressive stress after the first cycle. Additionally, Fa increases the stress range and compression stress and greatly improves the plastic strain accumulation degree in subsequent loading cycles. The Fmax can significantly increase the stress amplitude and plastic strain accumulation level. When R increases, the plastic strain accumulation increases a little, but the stress amplitude and compression stress decrease greatly. Furthermore, it is also found that the elastic-plastic mismatch also affects the plastic evolution, that is, strengthening or weakening the effect of the loading parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...